Ewolucja oka: jak powstały złożone organy wzrokowe i ich różnorodność
Ewolucja oka: jak z prostych fotoreceptorów powstały złożone oczy, wielokrotne ewolucyjne wynalazki i niezwykła różnorodność adaptacji wzrokowych.
Ewolucja oka jest przykładem homologicznego organu występującego u wielu różnych taksonów. Choć oczy występują u bardzo wielu grup zwierząt, ich budowa i pochodzenie mogą się różnić — niektóre elementy są wspólne z powodu wspólnego przodka (homologia), a inne powstały niezależnie w procesie konwergencji (podobne rozwiązania ewolucyjne u niespokrewnionych linii). Badania porównawcze anatomiczne, embriologiczne i molekularne pomagają rozróżnić, które cechy wynikają ze wspólnego pochodzenia, a które są efektem niezależnych adaptacji.
Niektóre elementy oka, takie jak pigmenty wzrokowe, wydają się mieć wspólnego przodka - to znaczy, że wyewoluowały raz, zanim zwierzęta się zradykalizowały. Chodzi tu przede wszystkim o rodziny białek zwanych opsynami — fotoreceptorowymi pigmentami związanymi z fotosensybilną cząsteczką chromoforu. Mechanizm transdukcji sygnału świetlnego (kaskada fototransdukcji) oparty na receptorach pokrewnych opsynom jest zachowany w wielu liniach, co sugeruje wczesne pojawienie się podstawowego "narzędzia" do wykrywania światła.
Jednak złożone, tworzące obraz oczy wyewoluowały około 50 do 100 razy - wykorzystując w swojej budowie wiele z tych samych białek i zestawów narzędzi genetycznych. To zjawisko nazywamy konwergencją: różne grupy zwierząt (np. kręgowce i głowonogi) rozwiązały problem tworzenia obrazów niezależnie, czasami przy pomocy odmiennej embriogenezy i odmiennych struktur, ale osiągając podobne funkcje, takie jak soczewka czy siatkówka. Przykłady: oko typu kamerowego u kręgowców i u ośmiornic oraz oko złożone (ommatidia) u wielu stawonogów — podobne funkcje, różne szczegóły rozwoju i budowy.
Tempo powstania i dowody kopalne
Wygląda na to, że złożone oczy powstały w ciągu kilku milionów lat, podczas gwałtownego wybuchu ewolucji znanego jako eksplozja kambryjska. Nie ma dowodów na istnienie oczu przed kambrem, ale szeroki zakres różnorodności jest widoczny w środkowokambryjskim Burgess Shale. Należy jednak pamiętać, że oczy i inne narządy z miękkich tkanek rzadko się fosylizują, więc brak bezpośrednich szczątków sprzed kambryjskiego okresu nie wyklucza wcześniejszego pojawienia się prostych fotoreceptorów — badania molekularne i zegary molekularne sugerują, że podstawowe komponenty wzroku mogły istnieć już wcześniej.
Jak powstawało oko — typowe etapy morfologiczne
Rekonstrukcje etapów ewolucji oczu (na podstawie porównań morfologicznych i rozwojowych) zwykle obejmują sekwencję:
- zwykłe komórki wrażliwe na światło (plamki świetlne),
- zagłębienie pigmentowe tworzące "miseczkę" — ograniczenie kierunkowości światła,
- zwężenie otworu do postaci tzw. oka szczelinowego/pinholowego, które daje prymitywne obrazy,
- pojawienie się przezroczystej osłony i ostatecznie soczewki (lub soczewkowatej struktury) — poprawa ostrości i jasności obrazu.
Wiele elementów, jak soczewka, powstało przez ko‑opting istniejących białek i genów — np. krystaliny (białka soczewki) pochodzą u różnych grup od enzymów lub białek stresowych, które zostały "przejęte" do nowej roli optycznej.
Genetyczny "zestaw narzędzi" dla oka
Rozwój oczu korzysta z konserwatywnych genów i szlaków sygnałowych. Najsłynniejszym przykładem jest gen Pax6, który pełni rolę głównego regulatora rozwoju oka u wielu zwierząt — jego ekspresja mogąca inicjować formowanie struktur wzrokowych widoczna jest w bardzo odległych grupach. Jednocześnie różne rodziny opsyn i elementy kaskady fototransdukcji (receptory sprzężone z białkami G, kinazy, kanały jonowe) są wykorzystywane w podobny sposób, co ułatwia wielokrotne „wynalezienie” oczu o złożonej funkcji.
Różnorodność funkcjonalna i adaptacje
Oczy wykazują szeroki zakres przystosowań, aby sprostać wymaganiom organizmów, które je noszą. Oczy mogą różnić się ostrością widzenia, zakresem długości fal, które są w stanie wykryć, wrażliwością przy słabym oświetleniu, zdolnością do wykrywania ruchu lub rozpoznawania obiektów, a także zdolnością rozróżniania kolorów. Typowe przystosowania obejmują:
- Ostrość i rozdzielczość — większa liczba receptorów i skupienie optyczne pozwalają na lepsze rozpoznawanie szczegółów (np. oczy drapieżników, ptaków drapieżnych);
- Wrażliwość przy słabym świetle — większe soczewki, większe źrenice, specjalne receptory i śródsiatkówkowe adaptacje u zwierząt nocnych;
- Zakres widma — niektóre gatunki mają widzenie podczerwone, inne widzą w ultrafiolecie (ptaki, owady), co może pomagać w polowaniu, orientacji czy wyborze partnera;
- Wykrywanie ruchu — układy neuronalne wyspecjalizowane do szybkiego rejestrowania zmian pola widzenia (owady, niektóre ryby);
- Polaryzacja — zdolność wykrywania polaryzacji światła (owady, skorupiaki), użyteczna do orientacji i rozpoznawania powierzchni;
- Widzenie barwne — różne zestawy opsyn umożliwiają rozróżnianie barw; u ssaków np. prymitywne trójchromatyczne widzenie u naczelnych, a u stawonogów często bardzo rozbudowane spektrum (np. modliszka morska z ponad 12 typami receptorów kolorów).
Te cechy są wynikiem kompromisów — np. wysoka ostrość często kosztem pola widzenia, a specjalizacje na widzenie w słabym świetle kosztem zdolności rozróżniania kolorów.
Przykłady konwergencji
Najbardziej znanym przypadkiem konwergencji są oczy kamery u kręgowców i u głowonogów (ośmiornice, kałamarnice): oba typy mają soczewkę, komórki receptorowe i siatkówkę, ale rozmieszczenie i rozwój tkanek jest odmienny (np. u kręgowców siatkówka jest „odwrócona”, a u głowonogów — „prawidłowa” orientacja receptorów). Innym przykładem są oczy złożone stawonogów, zbudowane z wielu ommatydiów, które umożliwiają szerokie pole widzenia i szybką detekcję ruchu.
Podsumowanie i otwarte pytania
Badania nad ewolucją oka pokazują, że złożone funkcje sensoryczne mogą powstawać szybko i wielokrotnie, wykorzystując wspólne, konserwatywne elementy molekularne. Nadal pozostaje wiele pytań: dokładne tempo powstawania poszczególnych struktur, szczegóły procesów prowadzących do powstania soczewek i wysokiej rozdzielczości wzroku oraz pełne wyjaśnienie, jak zmiany w genomie i rozwoju prowadzą do różnorodności form. Połączenie paleontologii, biologii rozwoju, genomiki i neurobiologii nadal odsłania kolejne etapy i mechanizmy powstawania oczu w przyrodzie.

Główne etapy w ewolucji oka.

Oko mięczaka: królowa koncha.

Pająk skaczący. Pająki mają wiele oczu.

Ta modliszka ma zakamuflowane oczy

Ślimaki lądowe zwykle mają dwa zestawy macek na głowie: górna para ma oko na końcu; dolna para służy do węchu.
Tempo ewolucji
Pierwsze skamieniałości oczu pojawiły się w dolnym kambrze, około 540 milionów lat temu. Okres ten był świadkiem wybuchu najwyraźniej szybkiej ewolucji, zwanej "eksplozją kambryjską". Jeden z biologów utrzymuje, że ewolucja oczu rozpoczęła wyścig zbrojeń, który doprowadził do gwałtownego przypływu ewolucji.
Wcześniej organizmy mogły mieć zastosowanie dla wrażliwości na światło, ale nie dla szybkiego poruszania się i nawigacji za pomocą wzroku.
Trudno jest oszacować tempo ewolucji oka. Proste modelowanie, zakładające małe mutacje poddane naturalnej selekcji, pokazuje, że prymitywny narząd zmysłu optycznego oparty na wydajnych fotopigmentach mógłby ewoluować w złożone oko podobne do ludzkiego w ciągu około 400 000 lat.
Wczesne etapy ewolucji oka
Najwcześniejszymi czujnikami światła były białka fotoreceptorowe. Są nimi gałki oczne, występujące u protistów. Eyespoty potrafią odróżnić tylko światło od ciemności. Jest to wystarczające dla fotoperiodyzmu i dobowej synchronizacji rytmów okołodobowych. Nie potrafią rozróżniać kształtów ani określać kierunku padania światła.
Oczodoły występują u prawie wszystkich głównych grup zwierząt. U Eugleny wziernik, zwany stigmą, znajduje się z przodu. Jego czerwony pigment ocienia zbiór światłoczułych kryształów. Wraz z wiodącym flagellum, gałka oczna pozwala organizmowi poruszać się w odpowiedzi na światło, wspomagać fotosyntezę i przewidywać dzień i noc, co jest podstawową funkcją rytmów okołodobowych.
Pigmenty wzrokowe znajdują się w mózgach bardziej złożonych organizmów i uważa się, że odgrywają rolę w synchronizowaniu tarła z cyklami księżycowymi. Wykrywając subtelne zmiany w nocnym oświetleniu, organizmy mogłyby zsynchronizować uwalnianie spermy i jaj, aby zmaksymalizować prawdopodobieństwo zapłodnienia.
Samo widzenie opiera się na podstawowej biochemii, która jest wspólna dla wszystkich oczu. Sposób, w jaki ten biochemiczny zestaw narzędzi jest wykorzystywany do interpretacji środowiska organizmu, jest bardzo zróżnicowany. Oczy mają szeroką gamę struktur i form, z których wszystkie powstały dość późno w stosunku do białek i molekuł leżących u ich podstaw.
Na poziomie komórkowym wydają się istnieć dwie główne "konstrukcje" oczu, jedna posiadana przez protostomy (mięczaki, robaki obunogie i stawonogi), druga przez deuterostomy (strunowce i szkarłupnie).

Znamię słupka (2) eugleny kryje światłoczułe miejsce.
Powiązane strony
Pytania i odpowiedzi
P: Jaki jest przykład narządu homologicznego?
A: Ewolucja oka jest przykładem narządu homologicznego, który posiada wiele zwierząt.
P: Do czego służy opsina?
O: Opsyny kontrolują zamianę fotonów na sygnały elektryczne.
P: Kiedy rozwinęły się złożone oczy?
O: Wydaje się, że złożone oczy powstały po raz pierwszy w ciągu kilku milionów lat, podczas gwałtownego wybuchu ewolucji znanego jako eksplozja kambryjska.
P: Czy istnieją dowody na istnienie oczu przed okresem kambryjskim?
O: Nie ma dowodów na istnienie oczu przed kambrem, ale wiele oczu można zobaczyć w skamieniałościach ze środkowego kambru Burgess Shale.
P: Jak różnią się oczy u różnych organizmów?
O: Oczy różnią się ostrością widzenia, czułością przy słabym oświetleniu, zdolnością do wykrywania ruchu lub identyfikowania obiektów. Ich wrażliwość na długość fal decyduje o tym, czy widzą w kolorach i jakie kolory widzą.
P: Jaką rolę odgrywa melanopsyna?
O: Melanopsyna, opsina występująca w siatkówce ssaków, jest zaangażowana w rytmy okołodobowe i odruch źreniczny, ale nie w widzenie.
P: Jakie wydarzenie wyznacza początek ewolucji oczu złożonych?
O: Złożone oczy zaczęły się rozwijać podczas gwałtownego wybuchu ewolucji, znanego jako eksplozja kambryjska.
Przeszukaj encyklopedię