Podstawy (matematyka)
W matematyce, podstawa lub radix to liczba różnych cyfr lub kombinacja cyfr i liter, która jest używana w systemie liczenia do przedstawiania liczb. Na przykład, najczęstszą bazą stosowaną obecnie jest system dziesiętny. Ponieważ "dec" oznacza 10, używa on 10 cyfr od 0 do 9. Większość ludzi uważa, że najczęściej używamy podstawy 10, ponieważ mamy 10 palców.
Podstawa jest zazwyczaj liczbą całkowitą większą niż 1, chociaż podstawy nieintegracyjne są również możliwe matematycznie. Baza liczby może być zapisana obok liczby: na przykład, 23 8 {\i1}styl 23_{\i0}} oznacza 23 w bazie 8 (która jest równa 19 w bazie 10). O Trecentoseksualnym, Stopnie kąta.
W komputerach
W komputerach często używane są różne bazy. Binarna (baza 2) jest używana, ponieważ na najprostszym poziomie, komputery mogą zajmować się tylko 0s i 1s. Stosowany jest system szesnastkowy (podstawa 16), ponieważ komputery grupują razem cyfry binarne. Co cztery cyfry binarne zamieniają się w jedną cyfrę szesnastkową przy zmianie między nimi. Ponieważ w systemie szesnastkowym jest więcej niż 10 cyfr, sześć cyfr po 9 jest pokazanych jako A, B, C, D, E i F.
Pomiar
W najstarszych systemach liczenia stosowano system bazowy. Wykonywanie oznaczeń na ścianie, przy użyciu jednego oznaczenia dla każdego liczonego elementu jest przykładem jednokrotnego liczenia. Niektóre stare systemy pomiarowe wykorzystują dwunastostopniowy radix (podstawa dwunasta). Pokazane jest to w języku angielskim, ponieważ istnieją słowa takie jak tuzin (12) i brutto (144 = 12×12), oraz długości takie jak stopy (12 cali).
Podstawy pisania
Podczas wpisywania bazy, mała liczba oznaczająca bazę znajduje się zazwyczaj w dziesiątce bazy. Gdyby bowiem radix był zapisany w swojej własnej bazie, zawsze byłby to "10", więc nie byłoby możliwości poznania, w jakiej bazie miałby być.
Numery w różnych bazach
Oto kilka przykładów, jak niektóre liczby są zapisywane na różnych podstawach, w porównaniu z liczbami dziesiętnymi:
Dziesiątkowy (podstawa 10) | Binarny (Baza 2) | W systemie dziesiętnym (Baza 11) | Szesnastkowy (podstawa 16) | Senary (Baza 6) | Jednoskładnikowy (Baza 1) |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 | 2 | 11 |
3 | 11 | 3 | 3 | 3 | 111 |
4 | 100 | 4 | 4 | 4 | 1111 |
5 | 101 | 5 | 5 | 5 | 11111 |
6 | 110 | 6 | 6 | 10 | 111111 |
7 | 111 | 7 | 7 | 11 | 1111111 |
8 | 1000 | 8 | 8 | 12 | 11111111 |
9 | 1001 | 9 | 9 | 13 | 111111111 |
10 | 1010 | A | A | 14 | 1111111111 |
11 | 1011 | 10 | B | 15 | 11111111111 |
12 | 1100 | 11 | C | 20 | 111111111111 |
13 | 1101 | 12 | D | 21 | 1111111111111 |
14 | 1110 | 13 | E | 22 | 11111111111111 |
15 | 1111 | 14 | F | 23 | 111111111111111 |
16 | 10000 | 15 | 10 | 24 | 1111111111111111 |
Pytania i odpowiedzi
P: Co to jest podstawa lub radix w matematyce?
O: Podstawa lub radix to liczba różnych cyfr lub kombinacji cyfr i liter, które system liczenia wykorzystuje do reprezentacji liczb.
P: Jaki jest przykład najczęściej używanej obecnie podstawy?
O: Najczęściej stosowaną obecnie podstawą jest system dziesiętny.
P: Dlaczego najczęściej używana jest podstawa 10?
O: Większość ludzi uważa, że podstawa 10 jest używana, ponieważ mamy 10 palców.
P: Czy podstawa jest zawsze liczbą całkowitą większą od 1?
O: Tak, podstawa jest zazwyczaj liczbą całkowitą większą od 1.
P: Czy matematycznie możliwe są podstawy niecałkowite?
O: Tak, podstawy niecałkowite są również matematycznie możliwe.
P: Jak oznacza się podstawę liczby?
O: Podstawa liczby może być zapisana obok tej liczby.
P: Co oznacza przykład "23 8"?
O: Przykład "23 8" oznacza 23 w podstawie 8 (co jest równe 19 w podstawie 10).